4

Function Vector Spaces
and Fourier Series

Vector spaces of functions can be infinite-dimensional. This implies a non-
trivial extension of many of the concepts developed for finite-dimensional
spaces. Section 4.1 is meant to provide a general picture of the location and
depth of these extensions, introducing an infinite orthonormal set of functions
(2m) =2 exp(inx), for n = 0, +1, +£2, ..., periodic in x with period 27. A
large class of functions can be expanded in a series, called Fourier series,
involving this orthonormal set. In Section 4.2 we prove one version of the
Dirichlet conditions which give a sufficiency definition for this set, while in
Sections 4.3 and 4.4 we explore several properties of series expansions related
to each other by translation, inversion, complex conjugation, and differentia-
tion and examine their convergence rates and the Gibbs phenomenon. The
next two sections, 4.5 and 4.6, enter into the field of generalized functions and
their divergent series representation. Although the complete mathematical
treatment of this subject is by no means elementary, we have followed a
“middle path” in the spirit of a physicist’s use of quantum mechanics.
Section 4.7 collects some results to be used in Chapter 5 and establishes a link
with Part II1.

4.1. Notions on Function Vector Spaces

The defining properties of complex vector spaces were given in Section
1.1. These comprise the operations of sum of vectors, multiplication by
complex numbers, and the distributivity of one with respect to the other. The
largest number of linearly independent vectors one can find in the space
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140 Part II - Fourier and Bessel Series [Sec. 4.1

defines the dimension of that space. When this number is not bounded, the
space is said to be infinite-dimensional. In this section we shall see that sets
of functions over some interval constitute such spaces. While intuition based
on ordinary finite-dimensional spaces is a reliable guide, the concepts must be
sharpened. Here we shall present the main ideas but gloss over the con-
siderable mathematical sophistication needed to fully justify them.

4.1.1. The Vector Space Axioms

Let f(x), g(x), . . . € & denote functions whose domain _# is an interval
in the real line Z and whose range is the field of complex numbers % (i.e.,
fi F—>%C, ¢ = X). Then af(x) + bg(x), where a,be® is another such
function, an element of #,. The defining properties of vector spaces (Section
1.1) are satisfied, and F is thus a vector space whose elements, functions, are
the vectors in the space.

4.1.2. Linear Independence
The statement of linear independence of a finite set of functions
{f(=1 = {i(x), fo(x), . . ., [u(x)}, fu(x) € i, can be phrased as
N
D fi(x)=0<¢c, =0, n=12.. N 4.1
n=1

[This is a direct translation of Eq. (1.1).] When the functions f,(x) of our
chosen set are N — 1 times differentiable, linear independence can be tested
in principle by constructing the system of equations formed by (4.1) and its
N — 1 derivatives:

N
> afP@) =0, p=01,2.. . ,N—1L “2)
n=1

If the ¢, are zero, (4.2) is clearly satisfied. Now, for (4.2) to imply that all
¢, = 0, the determinant of the system (4.2) must be different from zero.
This is the Wronskian of the set:

W({fn}, x) = det|d? =, (x)/dx?~1|, pon=1,2,:::, N. 4.3)

4.1.3. Spaces of Polynomials
Consider as a first example the set of power functions in Fy:
t(x) = x""t(n — 1), = 1,2;5...5N- 4.4

These are, of course, differentiable to any order as d”#,(x)/dx? = t,_,(x),
t(x) = 1, t,(x) = 0 for n < 0. The Wronskian (4.3) will then be the deter-
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minant of a triangular matrix whose diagonal elements are d™~z,(x)/dx"~! =
1, and hence W ({t,}, x) = 1 for any value of N. Now, linear combinations of
the vectors (4.4),

6 = 2, eata®) = 2, exH(n = DY, “.5)

can easily be seen to constitute a vector space of dimension N with a basis
(4.4). In fact, they are the set of polynomials up to degree N—1.

What happens when we let N grow without bound? The basis vectors
will remain linearly independent, and the set (4.5) will become the space of
all formal power series

fx) = 21 X"~ (n — 1)! 4.6)

characterized by the set of coefficients {c,}; -1, ¢, € 4. There are several
observations to be made here: (a) If the series (4.6) converges for all x in the
interval 7, it represents the Taylor expansion of f(x). This is the case, in
particular, when the set {¢,}»-; has a finite number of nonzero coefficients
so that f(x) is actually a polynomial. (b) The series (4.6), when evaluated,
may well diverge within _#. The formal power series (4.6) can still be handled,
however, in terms of the coordinates {c,}z-; and subjected to the formal
operations of sum and multiplication by a number. (c) We have no guarantee
that the space of functions (4.6) is the set of al// functions in &,. In fact,
it is clearly not.

4.1.4. Inner Product and Norm

To have a better grasp of function vector spaces, it is convenient to intro-
duce an inner product in 4. For f and g € # 4 representing the functions f(x)
and g(x), respectively, we define this (in analogy to Section 1.2) as

8= a5 @)

In the process of introducing such an inner product, we shall be losing those
functions in &, whose integral is not defined. This inner product (4.7) is
sesquilinear, i.e., linear in the second argument and antilinear in the first
[Egs. (1.4) and (1.5)]. From (4.7) we can also define a norm as

Il = & o = | [ dxlf(x)lz]llz- 48

On the question of whether the inner product (4.7) is positive definite, note
that we may have functions z(x) which are zero almost everywhere in 7,



142 Part IT - Fourier and Bessel Series [Sec. 4.1

i.e., except on at most a denumerable number of isolated points, where they
can take finite values. All such functions will have ||z|| = O under (Lebesgue)
integration. We shall consider all such functions to be equivalent to the null
function (z = 0). We shall similarly speak of fand any f + z being equivalent.
In this context, the inner product (4.7) is positive definite, as only for f = 0,
i.e., equivalent to the null function, do we have |[f| = 0. The space of the
(Lebesgue) square-integrable functions plays a central role in much of
mathematical physics and will be denoted by £2(_#).

One important property of vector spaces with positive inner products is
that their elements satisfy the Schwartz inequality, which was seen in Section
1.2 and which takes the same form as in Eq. (1.13): |[(f, )| < |f]-|gl.
There, the proof did not require the dimension of the space to be finite. In
this part we consider the case when _Z is a finife interval within #. By trans-
lations and changes of scale in x we can always transform # onto the
interval extending from —= to =.

4.1.5. A Set of Orthonormal Oscillating Exponential Functions

A set of functions { f,(x)} which satisfy (f,, f,,) = 0 for n # m will be said
to be orthogonal. Moreover, if ||f,| = 1, the set is orthonormal. The functions

eu(x) = (27) 12 exp(inx), n=0,z+1,+2,...,xe(—m,m], (4.9

can be seen to constitute such an orthonormal set since

(@ @) = Cm)7" [ dxlexplin)]* explimn)

Il

(2m)~t fﬂ dx expli(m — n)x]
[2mi(m — n)]~texpli(m — n)x]|%, =0, n # m,

(2ﬂ)—1f_n e = 1, nem 1O

We shall henceforth denote by & the set of all integers. A set of orthogonal
functions is also linearly independent in a space with a positive inner
product, since >,co c,¢p, = 0 when placed in inner product with any
one ¢, leads to ¢,(®,, ¢,) = 0, which implies ¢,, = 0 for m e Z.

Exercise 4.1. Show that the set of power functions (4.4) does not form an
orthonormal set under (4.7). The implementation of the Schmidt orthogonaliza-
tion procedure leads to the basis of orthogonal Legendre polynomials P,(wx). [See,
for instance, the book by Dennery and Krzywicki (1967, Chapter I1I).]
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4.1.6. The Space of Formal Fourier Series

We construct now the space of all formal series involving (4.9):
&) = D fipnx),  fo€® (4.112)
ney

Performing the inner product of the above equation with ¢,(x) and
assuming that the sum and the integration in the inner product can be
exchanged, we can use the linearity of the product and the orthonormality of
the set {¢p,},c# in order to find the coordinates of f in the ¢-basis as

Jo = (@, 1) (4.11b)

The inner product can then be written as

g = (Z FuPs; g) = > fost)= > fa (4.12)

ney ney ney
Written out, Eqgs. (4.11) read

fx) = 2m)~22 Z [r exp(inx), (4.13a)
ney
£ = (@m)-12 f " O expl—nn). (4.13b)

These are referred to, respectively, as the Fourier series and partial-wave ©
decomposition or as the Fourier partial-wave synthesis and analysis. Equation
(4.12) is the generalized Parseval identity

n
€9 = dferee= 3 fie (4.14)
-n ney
This is a relation between the integral of the product of two functions and the
sum of their partial-wave products.

4.1.7. Further Comments

Before pointing out the mathematical difficulties we have glossed over in
deriving (4.13) and (4.14), let us interpret these formulas as they stand.
Equations (4.13) tell us that an arbitrary function (in a class still to be deter-
mined) on the interval from — to « can be expanded in a series of exponen-
tial functions quite similar to the Taylor expansion (4.6). This result might
appear rather surprising, and indeed, historically, although Euler and
Lagrange worked with series of the type (4.13a), they assumed that f(x) had
to be infinitely differentiable, since the summands of the series are. It was
Fourier who in 1822 first dealt with series of the type (4.13a) to expand
functions which were composed of an arbitrary (but finite) number of
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segments of different continuous functions. Sufficiency conditions for the
convergence of the series were found later by Dirichlet (Section 4.2). In con-
trast with the Taylor series (4.6), where the coefficients ¢, = d" ~1f(x)/dx" | .=,
depend on the Jocal properties of the function, i.e., the value of f(x) and its
derivatives at the single point x = 0, say, the Fourier partial-wave coefficients
(4.13b) depend on the global characteristics of the function throughout the
integration interval and not at all on the value of the function at any single
ordinary point. Fourier series have been used extensively for generations in
problems connected with wave and diffusion phenomena, some of which will
appear in subsequent chapters.

Not until the 1930s, however, did physicists start making use of the formal
Fourier series (4.13a) when convergence in the classical sense was not assured
or expected. The work of Dirac (1935) in quantum mechanics, fundamental
as it is, was not considered mathematically sound until it was fully justified
by the distribution theory of L. Schwartz in the early 1950s. Although diver-
gent series within integrals had been properly treated by Fejér and Cesaro,
Dirac performed many of the dubious steps we have followed in deriving
(4.13), particularly the exchange of infinite summations and integrals [leading
from (4.10) and (4.11a) to (4.11b) and (4.12)], neither of which need exist. In
presenting our results in the way we shall, we are not engaging in violence
with existing mathematics but are rather exploiting the fact that the notation
and “naive’ concepts used in classical analysis can be considerably stretched
to include deeper results in an operationally well-defined way. In the following
sections we shall find several instances where, with the appropriate warning
signs, such an approach leads to profitable shortcuts.

Exercise 4.2. Explore the relation between the Taylor and Fourier series as
follows. Let F(z) be a function of the complex variable z, analytic in a disk with
center at the origin and radius «. The coefficients in the Taylor expansion

F(z) = ) Fuz"/n! (4.15a)
n=0
can be written, using Cauchy’s theorem [see Ahlfors (1953, Chapter 4)], as
1
F, = F™(0) = L-Fﬁ dzF(z)z~""1, (4.15b)
2mi c
where the contour C encircles the origin in a counterclockwise direction inside
the region of analyticity of F. (See Fig. 4.1.) Let z = pe'?, and consider the circular
integration contour C with center at the origin and radius y < «, the contour line

element being dz = iye'® dp. Let f,(¢) = (2m)~12F(pe'?). Equations (4.15) then
become

fo(p) = (2m)~12 ZO F,p" exp(ind)/n! (4.16a)

(n!)~y"F" = (2m)~ 12 f_ﬂ” dof,($) exp(—ing). (4.16b)
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Fig. 4.1. Integration contour for Eq. (4.15b).

For p = y and f, := y"F,/n! these are the Fourier series formulas (» > 0). The deli-
cate point in this analysis (which is not an exercise) is the consideration of all
functions for which this is valid, i.e., the limit y — «. Note that (4.16a) involves
only summation over nonnegative partial waves. These functions lie in Hardy
spaces [see Dym and McKean (1972, Section 38.8)]. To obtain the full Fourier
series, one has to consider Laurent expansions of functions analytic in an annulus.

4.2. The Dirichlet Conditions

The construction of the Fourier partial-wave analysis and synthesis as
the “limit” of a succession of vector spaces of growing dimension (Sections
3.4 and 4.1), for all its suggestiveness, did not provide us with an unambiguous
characterization of the class of functions which can be expanded in the set of
functions {@,(X)}.ez in Eq. (4.9). As a minimal condition, we saw that this
could be done for functions f(x) which are trigonometric polynomials, as
then they are a finite sum of ¢,(x)’s and the orthogonality of the ¢’s alone
guarantees the validity of the pair of equations (4.13)-(4.14).

4.2.1. Statement of the Theorem

A classic theorem by Dirichlet states that if a function f(x) is periodic
with period 27 and is piecewise differentiable, the succession of truncated
sums

filx) =@m) 12 > fiexp(inx), k=12,..., (4.17a)

In|<k

where

o= (2m)- 12 f dxf(x) exp(—inx), (4.17b)
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Af(x)
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Fig. 4.2. A piecewise differentiable function has bounded derivatives everywhere, except
at most at a finite number of points, where it may have bounded discontinuities.
Even at these points, however, the limits of the derivatives are defined and
bounded as we approach the discontinuity points from the right or from the
left.

converges to f(x) at all points of continuity of the function. At the points of
discontinuity, if any, the succession converges to the midpoint, i.e.,

lim f,(x) = 20f*) + fGe7)] = Im 3{f0x + o) + f(x — 9] (4.17¢)

&>0)

Moreover, in any subinterval where f(x) is free of discontinuities, the con-
vergence of the sequence f(x) to f(x) is uniform, that is, the bound on
| filx) — f(x)] is independent of x.

We remind the reader that a piecewise differentiable function is one
which has a bounded left and right derivative everywhere except at most at a
finite number of isolated points. Specifically, f/(x*) = lim, .o df(»)/dY |y=x £e»
e > 0, must have a finite value for every x, although in case f(x) or f'(x) has a
discontinuity at x,, f'(xo*) and f'(x,~) may be different. See Fig. 4.2. The
discontinuity must thus be bounded, and therefore f(x) itself is bounded.
Since the interval is finite, the function is absolutely integrable.

We shall call the space of functions which satisfy the Dirichlet conditions
¥°P. Note that any finite linear combination of functions in #"? is a function
%,

4.2.2. Alternative Versions

The Dirichlet conditions, as stated above, are sufficient conditions for
the pointwise uniform convergence (for every x in the interval) of the Fourier
series. They are not necessary, however, and several weaker (and harder to
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prove) sets of conditions lead to similar results. A second commonly stated
set of conditions is the following: Let f(x) be a periodic function of period 27
which (a) is piecewise continuous, i.e., continuous at all but a finite set of
points; (b) has a finite number of bounded discontinuities; (c) has a finite
number of maxima and minima; and (d) is absolutely integrable. Then the
succession of truncated sums (4.17a) converges as described above. The
convergence is uniform for subintervals free of discontinuities of f(x).
Conditions (b) and (c) are asking for bounded total variation. Further weaken-
ing of the conditions can be achieved if these are required to hold only inside
a subinterval of [—m, 7]. [See, for example, Bary (1964, Chapter 1) and Dym
and McKean (1972, Sections 1.4 and 1.5).]

4.2.3. Proof

Due to the transparency of the proof, we shall tackle the first version of
the theorem. First substitute (4.17b) into (4.17a). As the sum is finite, it can
be interchanged with integration, yielding

7 = 07t [ ) 3 el =301 = | avf()Dutx = ),
-7 n|<k -z
(4.18)
where the Dirichlet kernel D,(x — y) can be calculated using the geometric

progression formula (1.50) for x = exp[i(x — y)], a = —k, b = 2k:
Dy(z) = @m)™* > exp(inz)

Inl<k

= (2m) "1 — exp(iz)] ! exp(—ikz){l — exp[i(2k + 1)z]}

= (2m)~1sin[(k + })z]/sin(z/2). 4.19)

We note that the Dirichlet kernel is a real even function and that
D,(0) = 2m)~ 2k + 1), (4.20a)
f dpTife — gy 1. (4.20b)

The last relation is due to (4.10), as all but the » = 0 summand in (4.19)
integrate to zero. The Dirichlet kernel (Fig. 4.3) oscillates strongly through-
out the interval; at the midpoint it has its maximum at a peak which is
roughly double the width of that of other oscillations. When integrated as in
(4.18), in company with a differentiable or continuous function, this peak
for large k is expected essentially to ““punch out” the value of the function
at y = x, the rapid oscillations beside the main peak giving a vanishing
contribution due to the Riemann-Lebesgue lemma [see Apostol (1975,
Section 15-6)].
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Fig. 4.3. Dirichlet kernel functions D,(x) for increasing values of k (left). These functions
have constant partial-wave coefficients (27)~*2 for |m| < k (right). For
increasing k, the central peak grows without bound.
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Consider now the difference between the kth truncated sum fi(x) and
If(x*) + f(x7)], where f(x*) = lim,,, f(x + €), ¢ > 0. This allows us to
work with points where the function is continuous, the last expression then
being simply f(x), or points where it is discontinuous but differentiable for
points arbitrarily close at either side of the discontinuity. Using (4.18),
(4.20b), the evenness of D,(x — y), and the periodicity of the functions
involved, we write

Selx) = 3 f(x*) + f(x7)] = fo” dy[f(x + y) — f(xH)]D(y)

. f LG — ») — fGND). (4.21)

The integrals have the form

f: dyg.(x, y)sin[(k + Dyl,  g.(x,») = If(x £ ») — f(x*)]/sin(y/2),
4.22)

and they exist because the kernel and, by assumption, f(x) are absolutely
integrable. The only point which might seem troublesome is y = 0, but
clearly g.(x, 0%) = f'(x*), which is bounded.

We can now integrate (4.22) by parts:

(e + g ) coslle + D10 — [y EED coste + 31},

(4.23)

As the difference (4.21) is proportional to (k + )~ ! times a bounded function
of x (see Exercise 4.3), when k — oo this difference tends toward zero, and
the succession of truncated sums f(x) approaches 1[f(x*) + f(x7)]. In
particular, when x is a point where f(x) is continuous, the bound of the
function in (4.23) provides a bound on the difference (4.21) which is indepen-
dent of x. The convergence of the succession of truncated sums will thus be
uniform for the intervals of continuity of the function.

Exercise 4.3. Prove that dg.(x, y)/dy is a bounded function in the interval
[0, 7r]. In particular, at the problematic point y = 0 this function is zero.

Exercise 4.4. Verify that the Parseval identity, Eq. (4.14), is a direct conse-
quence of the validity of (4.17).

To provide working examples of Fourier series expansions which will be
used later on, we shall consider some specific cases which satisfy the Dirichlet
conditions.
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4.2.4. Example: The Rectangle Function

The rectangle function of width ¢ and height » centered at the origin is

7, —ef2<x<¢2<m,
e = {0 otherwise (2

See Fig. 4.4. The rectangle function is assumed to be periodic as are all
functions in ", so we require ¢ < 2. The partial-wave coefficients can be
found by direct substitution in (4.17b):

&2

REM = (2 —1/2f dxRE(x) = 7)(2.,,.)—112‘[ dx = ne(2m)~112,

-&/2
(4.252)
&/2
REM = n(2m)-12 f dx exp(—inx) = 2 sin(ns)/(2m)3n, n % 0.
—&/2
(4.25b)

Note that for » = 0 Eq. (4.25b) yields formally (4.25a).
Partial-wave synthesis for the truncated sums (4.17a) defines the functions
RE™(x) = (2n)~V2REM + (2m)~ 12 RE™ exp(inx)

b 0#|n|<k

= n(27r)‘1(e + 4 n~* sin 1ne cos nx)

OF|nf<k
NE

= 7,(277)‘1{e +2 zli: n~tsin[n(x + &/2)]

-2 i n~1sin[n(x — e/2)]}. (4.262)

These truncated sums have been plotted for a few values of k in Fig. 4.5.
In this figure it appears that the truncated sums indeed converge to the
original function. The oscillations near the edges of the discontinuity do not
decrease in amplitude, however, as the number of terms increases. This is the
Gibbs phenomenon, which we shall discuss further in Section 4.4. The result
we have proved in this section tells us that, as the rectangle function (4.24)
satisfies the Dirichlet conditions,

. REN(X), X # +e/2,
1 (&,m) = 3
Jm Ri™(x) {n/z, i g, (8.268)
;
T . 0 7T
' -€/2 ' €/2 ¥

Fig. 4.4. The rectangle function.
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Fig. 4.5. Succession of truncated Fourier sums approximating the rectangle function
(left) with £ summands. The Fourier coefficients (right) are zero for |m| > k.

Exercise 4.5. Prove the trigonometric series identity
= (m—0)2, 0<80 <27,
1 —
n=§1 n~1sin nf {O, 9= 0,27 4.27)

using Fourier series. Note that to prove this identity without this technique is
quite difficult. [See, for instance, the book by Bromwich (1926, p. 188).]
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4.2.5. Example: The Triangle Function

Consider now the triangle function of height A:

Th(x) = {h(x + m)fm, —7m<x<0,

Wor — )fm, 0K x < (h28)

See Fig. 4.6. Again, the Fourier partial-wave coefficients can be found
without further ado as

0
T, = 2r —1/2[,,-1 f dxh(x + =) exp(—inx)

+ 771 L ’ dxh(m — x) exp(—inx)]

wh(2m) =12, n =0,
4h(2m) ~2[mn?, n odd, (4.29)

0, otherwise.

The Fourier synthesis is then given by the limit of the truncated sums

T.(x) = h(% + 472 n=2cos nx), (4.302)

|nJodd<k

lim Tix) = 7). (4.30D)

The convergence of (4.30) as k — oo to the triangle function is guaranteed by
the easily verifiable fact that 7"(x) satisfies the Dirichlet conditions. Moreover,
it converges faster than the truncated sum succession of the rectangle function
(4.26). While an upper bound of the partial-wave coefficients of the latter is
~ |n| =%, those of (4.30) decrease as ~ |n|~2. Thus it suffices to keep only a
few terms to reproduce the original function down to the limit of visual
acuity in Fig. 4.7. The question of convergence rate will be explored in
Section 4.4. The two functions we have introduced here as examples and others
which will appear later on have been collected in Table 4.4.

Exercise 4.6. Prove that f(x) is a positive function if and only if its Fourier
coefficients f, are a positive-definite set, i.e.,

[ >0 > fiwgdge>0 (4.31a)
nn'ed

for an arbitrary set of coefficients {g,}n,c2. You can show first that the second
member of (4.31a) equals (2m) 322 |7  dxf(x)| g(x)|2. Refer to Eq. (1.56). Similarly,
for all g(x) € L%(—m, m), L4

Fo O f_ﬂ dx f " BRG ~ X e el = 0, (4.31b)
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4.3. Alternative Representations, Transformations, and Symmetries

The Fourier series

f(x) = (2m)~12 z f» exp(inx), xe(—m 7], (4.32a)
nezx
[ = (Qm)~112 fﬂ dxf(x) exp(—inx), ne Z, (4.32b)

expands the function f(x) € P in terms of imaginary exponential functions.
When the function is real or has certain symmetry properties, it may be
more convenient to use the trigonometric functions, sine and cosine, for the
same purpose. The rectangle and triangle functions which served as examples
in Section 4.2 have been given alternative series representations in terms of
the trigonometric functions [Egs. (4.26a) and (4.30a)]. At a glance, these tell
us (among other things) that the series are even functions in x.

4.3.1. The Sine and Cosine Fourier Series

Using Euler’s formula, we can rewrite (4.32) as
f(x) = @m)~ Y3yt + 7712 §1 (fpt cosnx + f,” sinnx) (4.33a)
with _
for =fo = @m)~12 f " axf o), (4.33b)

fir = 2mUn(f, 4 fL) = n-lfzf dHbcme m=12 . (433

fam = 27UB(f — £ = w‘l/zf D) Sz, B= 1,2 (433

This is sometimes called the Fourier sine and cosine series.

4.3.2. Moduli and Phase Shifts

A further alternative representation can be set up from (4.33) as
f(x) = @m)"Y2F, + 7742 > F, cos(nx + ¢,), (4.342)
n=1

FO:=f0+3 Fncos¢n:fn+a FﬂSin¢n=—f;‘l—s n= 1,23"'9
(4.34b)

which expresses f(x) in a cosine series with phase shifts. Note that if f,* and
Jfo~ are complex, so are F, and ¢,.
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Exercise 4.7. Find the analogue of (4.34) in terms of sine functions with
phase shifts. Relate these to (4.33) and (4.34b).

4.3.3. Linear Operators

Part of the task of finding the Fourier partial-wave coefficients of a
function is obviated if we know how to build, from known ones, new Fourier
series for related functions. The first and most obvious correspondence is the
one obtained under /inear combination of functions. Let f(x) and g(x) be two
functions satisfying the Dirichlet conditions, with partial-wave coefficients
{fitnez and {g,}nez. Then clearly the linear combination function A(x) =
af(x) + bg(x), a, be¥, will also satisfy the Dirichlet conditions and will
have Fourier coefficients %, = af, + bg,, n € Z. The proof of this result uses
elementary results on the differentiability and integrability of linear combina-
tions of functions.

Exercise 4.8. Show that the coefficients of the Fourier sine and cosine series
(4.33) of the above sum of two functions are /4,* = af,* + bg,*.

We shall now introduce /inear operators A as mappings in the space of
functions ¥"? which satisfy the Dirichlet conditions. This follows closely the
finite-dimensional concepts introduced in Section 1.3, except that we have no
a priori guarantee that any given operator will be a one-to-one mapping of
¥"P on ¥"P. In this section we shall consider only operators which do map this
space into itself, i.e., if f € #"P, then Af € #"P. Moreover, these mappings are
to be linear, i.e., .

A(af + bg) = a(Af) + b(Ag) (4.35)
forf,ge?Pand a,be®.

4.3.4. The Translation Operator

Let T, stand for the linear operator which translates the reference
coordinates of the real line to the left by a, i.c.,

(THx) = f(x + a), a = amod 27, x = x mod 27.  (4.36a)

It is clear that T .f satisfies the Dirichlet conditions if f does. If the Fourier
coefficients of the latter are {f,},c, then those of Tf will be

(Tf), = (2m)-12 f " BT EI00 expl~in)
= (2m)~12 fﬂ dxf(x + a) exp(—inx)

= 2m)~t2 f_ﬂ dx'f(x") exp[—in(x" — a)] = exp(ina)f,. (4.36b)

Note that in ¥'2, T, is equivalent to the identity operator.
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In terms of the alternative representations (4.33) and (4.34) the trans-
formations of the coefficients (4.36b) take the forms

(-ﬂ-af)n+ = 2_1l2[(Taf)n + (Taf)—n]
= 27'2[exp(ina)f, + exp(—ina)f-,]
2-Y2[cos na(f, + f_,) + isinna(f, — f-n)]

= cos(na)f,* + sin(na)f, ", n=.1,2;: - (4.37a)
Similarly,
(T f),~ = —sin naf,* + cos naf,~, n=152 .- (4.37b)
while
(Tuf)o* = fos (4.37¢)

which is formally contained in (4.37a) for n = 0. These relations can be also
obtained as in (4.36b) using (4.33b)—(4.33d). In Table 4.1 we summarize the
results of this section.

Exercise 4.9. Show that if g = T,f with shifted Fourier cosine coefficients
G,, y» and F,, ¢,, respectively, then

G, = F,, n=0,1,2,..., (4.38a)
Yo=¢n+na, n=12,..., (4.38b)

which simply tells us that under translations only the phase shifts are changed,
while the amplitudes of the constituent waves remain the same.

Exercise 4.10. Build a square wave of height » with P pulses (Fig. 4.8) from
the rectangle function (4.24) as

P \
SEN(x) = —9 + Z RWHEP20(50 = 57), x; = 21+ )m/2P. (4.39a)
=1

Since we know the Fourier coefficients of the undisplaced rectangle function
(4.25), using (4.36), linear combination, and Eq. (1.50), show that the Fourier
coefficients of (4.39a) are

4imP(2m)~Y2/n, n = 2k + 1)P, ke Z,

S;P,n) =
0, otherwise
3

(4.39b)

H H H .
L L L -

Fig. 4.8. Square wave with five pulses.
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or
—49Pr~2[n, n= 2k + 1)P, ke Z,
(Py)— — 2
S {O, otherwise, (3=5)
SED+ = 0, (4.39d)

Exercise 4.11. Let T, stand for an operator which translates the Fourier
coefficient labels & units to the left:

(Te)n = frsx- (4.40a)
Show that the action on the corresponding functions is
(Tf)(x) = exp(—ikx)f(x). (4.40b)

4.3.5. The Inversion Operator

Now let [, be the operator which inverts the coordinate axis through the
origin:

ToH)(x) = f(—x). (4.41a)

Then, by reasoning parallel to (4.36b), we obtain the relation between the
Fourier coefficients of f and [.f as

Tof)n = f-n, (4.41b)

i.e., f, as a function of n € & also suffers reflection through the origin.

Exercise 4.12. Show that the coefficients in the sine and cosine Fourier
series transform under inversions in the way given by the corresponding entries
in Table 4.1. Do the same for the amplitude and phase-shift coefficients.

Exercise 4.13. Verify that the Fourier coefficients of the square wave in
Fig. 4.8 [Egs. (4.39b)—(4.39d)] imply the oddness of the function as S, = —S_,.
The rectangle and triangle functions of Section 4.2 are even. Verify this property
by means of their Fourier coefficients.

Exercise 4.14. In the spirit of Section 3.4, where Fourier series were seen as
the infinite-dimensional limit of the finite Fourier transforms, show that T, and
I, are the corresponding ““limits’’ of the rotation and reflection operators R* and
I, for finite-dimensional spaces in Section 1.5. The operators introduced here also
form a group, as

TaTo = Taso, To=1 = Tg, Tt = T=g, (4.42a)
Io? = 1], lg = TeoloT g, laly = Taw-a), (4.42b)

which is the infinite-dimensional version of the dihedral group. As these consist
of reflections and rotations by any angle in a two-dimensional plane and conserve
angles between vectors, the group they constitute is called the two-dimensional
orthogonal group Os.



158 Part II - Fourier and Bessel Series [Sec. 4.3

Exercise 4.15. Show that T, and 1, map 72 into itself and moreover that
(g; -u—uf) = (-u——ag9 f)3 (4433)
(g, 1.f) = (l.g, D) (4.43b)

on any pair of square-integrable functions f, g.

Exercise 4.16. Define the dilatation operator Dy for k an integer that has
the following effect on periodic functions f(x) of period 27 :
(Def)(x) = f(kx), (4.44a)

i.e., they are transformed into functions of period 27/k (which are also of period
2m), repeating k times the form of f in (—m, 7). Show that the Fourier coefficients
of D.f are related to those of f as

ifn="FkmmeZ,
otherwise.

R (Dif)n = {gm

V.

g (4.44b)
f In particular, we have D; = 1 and D_; = [,. Show that this works with the
square wave with P pulses (Fig. 4.8) in Exercise 4.10. Note that the group axioms
of Section 1.4 we can satisfy are (a) D,D; = Dy, (b) associativity, and (c) existence
of an identity @; = 1. Axiom (d), the existence of an inverse for every Dy, is not
satisfied. Such an operator would take us out of the space of periodic functions of
period 27 and hence does not exist in the space. A group minus axiom (d) con-

stitutes a structure called a semigroup with identity.

4.3.6. Complex Conjugation

Now consider the function f*(x) which is the complex conjugate of a
given f(x) € #"P. The Fourier partial-wave coefficients of the former can be
related to those of the latter by

(%), = 2m)~ 12 ng*(x) exp(inx)

[(2w)-”2 > ) exp(—inx)]* = J*. (4.45)

ney

Exercise 4.17. Show that the coefficients in the alternative representations of
the Fourier series of the complex conjugate of a given function are those in the
corresponding entries in Table 4.1.

4.3.7. Eigenfunctions and Eigenvalues

When a function f(x) is mapped into a multiple of itself under the action
of a given operator A, i.e., when

(Af)(x) = M(x), (4.46)

we shall say that f(x) is an eigenfunction of A with eigenvalue A. Equation
(4.46) describes those directions in the function vector space which are
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preserved under the action of A. In the context of transformations, an f(x)
satisfying (4.46) is also said to exhibit definite symmetry under the action of
A. The functions which satisfy (4.46) with A = 1 are said to be invariant
under that transformation.

Let us investigate the eigenvalues and functions of the operators intro-
duced in this section from the point of view of the possible symmetries they
can exhibit.

4.3.8. Definite Symmetry under Inversion

Consider first the inversion operator [, in (4.41a). As [,? = 1, (1,2f)(x) =
Mlf)(x) = A%f(x) = f(x); hence the eigenvalues of [, in ¥ can only be
A =1 or A = —1. Functions which are even [f(x) = f(—x)] will be eigen-
functions of [, with eigenvalue A = 1, while odd functions [f(x) = —f(—x)]
will correspond to the eigenvalue A = — 1. Definite symmetry under inversions
is called parity, so eigenfunctions of the inversion operator are those of even
or odd parity. Any function can be decomposed uniquely into a sum of an
even- and an odd-parity function; however, superpositions have no definite
parity. The inversion operator thus divides the space of functions into two
subspaces, each of definite parity, whose union is the full space and whose
intersection is only the null function. Now, Eq. (4.41b) gives us the same
information but in terms of the Fourier coefficients: even (respectively odd)
functions will have partial-wave coefficients which are even: f, = f_,
(respectively odd: f, = —f_,). Table 4.2 shows the implied relations for the
alternative representations. From (4.33c)-(4.33d) we can see quite simply that
for even (respectively odd) functions, f,~ = 0 (respectively f,* = 0), while
(4.34b) shows that all ¢, = 0 (respectively ¢, = =/2).

4.3.9. Definite Symmetry under Translations

Regarding functions with definite symmetry under translations, Egs.
(4.36), we first note that any function consisting of a single partial wave
o(x) = (2m) =12 exp(ilx) [Eq. (4.9)], i.e., with Fourier coefficients ~ §, ;, will
be an eigenfunction of all translation operators T,, with eigenvalue exp(ila).
Indeed, they are the only functions to have this property and could have been
constructed asking for it to hold. Let us consider now a fixed operator T,
and look for all partial waves which correspond to the same eigenvalue A,.
Since any function in ¥"? consisting only of such partial waves will be an
eigenfunction of T, with eigenvalue A,, we shall generate eigenspaces of T,
labeled by A, whose properties will be then explored. Let the translation be by
a = 2n[k, where k is a positive integer. The eigenvalue of ¢,(x) will then be
exp(2mil/k), which is the same for all » = /mod k (that is, for n = [ + km,
m an integer). If / is chosen in the range 0, 1,..., kK — 1, we can divide ¥'?
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into k eigenspaces ¥,P, any element of which has eigenvalue exp(2wil/k)
under T,. In particular, ¥32 is the space of all k-fold periodic functions in
(—m, m], i.e., with period 27/k, and consists only of linear combinations of
@n(x) with n an integer multiple of k. Only these partial-wave coefficients can
be nonzero. (See Exercises 4.10 and 4.16 for k = P, where indeed we found
that S, = 0 when # is not a multiple of P.) For other values of / translation
by 2n/k will produce a function identical with the original one but for a phase
factor exp(2mil/k). In particular, if k is even, the space ¥"5, will consist of all
functions which change sign under such a translation.

Exercise 4.18. Consider Fig. 4.8. The square wave changes sign under
translation by r/P. By the above argument show that for k = 2P the only partial-
wave coefficients which can be nonzero are S, for n = 2m + 1)P, me Z, i.e.,
the odd multiples of P. In this way we are predicting al// the zeros which appear on
the Fourier partial wave expansion of the square wave.

Exercise 4.19. Show that the only periodic function with definite symmetry
under dilatations is the constant function.

4.3.10. Real and Imaginary Functions

Last, we turn to complex conjugation. As the application of this opera-
tion twice is equivalent to the identity, we can have only f*(x) = f(x) when
the function is real or f*(x) = —f(x) when it is pure imaginary. The simplest
description of these two subspaces of functions is in terms of the coefficients
of the sine and cosine Fourier series, which are constrained to be purely real
or imaginary, respectively. See Table 4.2.

Exercise 4.20. Verify that the Fourier partial-wave coefficients in all repre-
sentations for the rectangle, triangle, and square-wave function indeed have the
property of Table 4.2 corresponding to real functions. For the case of the square
wave in Fig. 4.8, we can see that the function is real; hence S, = (S-,)*. It also
has odd parity, which means that S, = —S_,. The conclusion therefore is that all
Fourier coefficients must be pure imaginary, while the zeros are inferred from the
multiple-periodicity argument. We note, moreover, that the overall convergence
behavior of the Fourier series can be characterized by S, ~ |n|~*. This feature
and its generalization will be studied in Section 4.4.

The results in this section allow us to use the symmetry properties of a
function under inversion, translation, and complex conjugation in order to
predict corresponding properties of the Fourier partial-wave coefficients, in
particular, to know which are equal to each other and which are zero. This
usually results in a drastic simplification of the problem at hand and is widely
used, for instance, in quantum mechanics in order to reduce the—generalized—
partial-wave decomposition of the allowed states of a system where the
symmetry properties are inferred from physical considerations.
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Table 4.2 Functions with Definite Symmetry under a Transformation and the
Corresponding Restrictions on Their Fourier Partial-Wave Coefficients

Function Restrictions on the Fourier
Transformation property partial-wave coefficients
Translation k-fold f» = 0 for n # 0 mod k (n not multiple of k)
by 2n/k periodic in s
(k integer) (==, 7]
Changes fo =0forn# Imodk
phase by (similarly for alternative representations)
exp(2nillk)
Inversion Even Jo = fun fuim =0 ¢ =0
Odd fo=—f-n Lt = ¢n = 72
Complex Real Jo =1(fon)® fa* real " F, ¢, real
conjugation Pure fo = =(f-n)* fn* imag. F, imag.,
imaginary ¢ real

4.4, Differential Properties and Convergence

In this section we shall explore the relations between Fourier series and
differentiation. This will lead to a better understanding of the rapidity of
convergence of these series, the Gibbs phenomenon, and some of the
“smoothing” techniques used to circumvent it. Finally, we shall mention
the meanings of ““best approximation” and the Bessel inequality.

4.4.1. Fourier Series, Integration, and Convergence

Consider a function f(x) which satisfies the Dirichlet conditions and its
integral

e = " B, @4

It is easy to see that /<~ ¥(x) will also satisfy the Dirichlet continuity conditions
since the integral of a differentiable (or continuous) function with at most
bounded discontinuities is differentiable at all but a finite number of points.
So that /<~ 2(x) will be periodic with period 2=, we must require that a shift
in the integration limits by 27, each independently, leave the value unchanged.
This means that

| T () = @, = 0,

x



Sec. 4.4] Chap. 4 - Function Vector Spaces/Fourier Series 163

i.e., fo = 0. If this is satisfied, we can consider the Fourier coefficients of f(x)
and f(_l)(x)’ {f;t}neﬂf and {fr(u—l)}nez’, Writing

@m)~42 > fi~9 exp(inx) = £ 3(x) = a)~¥2 f "y > frexpliny)

ney ney

= @02 3 1, [ dyexpting)

ney

= @m)2 3 filin)* exp(ing)

ney

— (2m)~12 Z Jfa(in)~1 exp(inc). (4.48)
negy
We have been able to exchange integration and infinite summation, as they
both exist and converge uniformly. The last sum in (4.48) is the arbitrary
integration constant f§ . The equality of the coefficients of the (independent)
partial waves yields

fio=0n)=,, 0#£neZ (4.49)

In relating the Fourier coefficients of f(x) with those of its antiderivative
< V(x) we see that the latter give rise to a more rapidly converging Fourier
series than the former. In fact, uniform convergence of the former guarantees
that of the latter.

4.4.2. Differentiation

Turning the tables, suppose now that we know the Fourier coefficients
of a piecewise differentiable function f(x) satisfying the Dirichlet conditions.
The Fourier coefficients of its derivative f'(x), { fy}ne2, Which we must assume
also satisfies Dirichlet, can be found from (4.49), replacing f~* by f and f
by f, as

e =linf, neZ. (4.50)

We can perform differentiation repeatedly and—Dirichlet allowing—express
the Fourier coefficients of the pth derivative of f(x), f®(x), as

2 = (in)tf,, ne %, (4.51.)

The Fourier series with coefficients (4.51) will converge to the pth derivative
of f(x). In fact this allows us to define fractional derivatives for complex p.
In Fig. 4.9 we have plotted the fractional derivatives of the triangle function,
minus a constant so that its integral will be a periodic function, for real p
between — 1 and 1.75. In Table 4.3 we have collected some of the useful facts
found in this section. An extensive table of Fourier coefficients and trigono-
metric series has been compiled by Oberhettinger (1973a).
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Fig. 4.9. Fractional derivatives of order n of the triangle function. The latter has been
slightly smoothed so as to avoid the appearance of the Gibbs phenomenon for
positive derivatives in the finite computed series; still, spurious oscillations
appear in the highest derivatives.

Exercise 4.21. Assume f(x) is a trigonometric polynomial. Verify the
validity of (4.51). ;

4.4.3. A Theorem on the Convergence of Fourier Series

One feature which is apparent in the relation (4.51) is that the rapidity of
convergence of the infinite Fourier series of f®(x) gets worse with each
successive derivative. It is to be expected that we may reach a p where the
Fourier series diverges. In fact, we shall prove the following statement:
If the pth derivative of a function f(x) is a square-integrable, its Fourier coeffi-
cients must decrease as |f,| < c|n| =P for ¢ = ||[f®@|}/2.

4.4.4. Proof

The proof proceeds by use of the Schwartz inequality [Eq. (1.13)],
noting that, since

S = (n)~2f5P = (in)~"(epn, £P) (4.52)
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[see Egs. (4.7), (4.9), and (4.17b)], we have
|fal = |n]=?|(pn, £)] < [1] 2| s | /2] £2]| 212 (4.53)

Now, the functions ¢,(x) have unit norm, and [|f®| exists by assumption.

One can immediately draw an important corollary to this result: if a
function f(x) is infinitely differentiable (and thus integrable, as the interval is
finite), then its Fourier coefficients f, must decrease with increasing » faster
than any power of |n|. Clearly, this result is satisfied when f, = 0 for |n]
larger than some fixed M, since then f(x) is only a trigonometric polynomial.
It also holds for more general cases, an example being the Jacobi theta
function, which will be discussed below.

4.4.5. An Example

We can verify the workings of these results graphically. Consider the
triangle function, Eq. (4.28), whose Fourier coefficients are

(2m)~2mh, =0,
T, = { 4(27)~Y2hfmn?, n odd, (4.54)
0, otherwise.

In Fig. 4.10(a) we show a few truncated sums and note that for the sixteenth
one the original function is already ““well”” reproduced. The derivative of the
triangle function of height 4 is a function with value 4/7 in (—=, 0) and — h/m
in (0, 7). This is a square wave [Eqs. (4.39)] with one pulse (P = 1) of height
n = hfm, whose Fourier coefficients are

S@him — {4i(2")_1'2h/77n, n odd}

= inT," :
0, n even s U

The Fourier series with coefficients (4.55) converges slower than (4.54), with
the speed of the alternating harmonic series. In Fig. 4.10(b) we have plotted
the derivatives of the truncated sums of Fig. 4.10(a). Finally, in Fig. 4.10(c)
we have drawn the derivatives of Fig. 4.10(b). This corresponds formally to
a Fourier series with coefficients

—4(27)"2hm=1, 1 odd,

4.56
0, n even. ( )

S;l,h/n)' = inS;L””') — {
The set of coefficients (4.56) cannot give rise to a convergent Fourier series
as the terms have the same absolute value for all n. Figure 4.10(c) and the
divergent series represented by (4.56), however, are not without meaning, as
we shall see in Section 4.5. The point here is to note how the result on con-
vergence applies here. The first derivative of the triangle function is the one-
pulse square wave, which is square-integrable; hence the Fourier coefficients
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Fig. 4.10. Relation between differentiability and convergence. (a) The triangle function
and its first few truncated Fourier sums; (b) and (c) are their first and second
derivatives.

of the former, Eq. (4.54), must decrease faster or at least as |n| =%, and so
they do.

4.4.6. Contrapositive of the Theorem

The contrapositive of the result on differentiability and convergence
[(4 = B) < (not B =- not A)] states that if the Fourier coefficients of a func-
tion f(x) decrease more slowly than |n|~* (i.e., |f,] = c|n|~?), then f®(x) is
not square-integrable (i.e., |f®| does not exist).

Applied to the example at hand, |7,| > ¢|n| =2~ for any positive e,
and hence T@*9(x) is not square-integrable. In fact, 7®(x) is already outside
ZL?*(—m, m), as we can see using the Parseval identity [Eq. (4.14)] for the
coefficients (4.56). This relation between differentiability and convergence is
not very constraining but, on the other hand, is quite general. Its formulation
for arbitrary orthonormal bases can be seen in a short article by Schneider
(1971). The convergence properties of trigonometric series constitutes a
broad field indeed. The two-volume treatises by Zygmund (1952) and Bary
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(1964) cover this ground in due detail. We have collected some of the results
of this section in Table 4.3.

4.4.7. The Gibbs Phenomenon

Returning to Fig. 4.10(b) and the Fourier series of the one-pulse square
wave with coefficients (4.55), we note that the convergence is particularly poor
near the edge of the discontinuities. In Fig. 4.11 we have amplified the
oscillations which take place. There is a characteristic overshoot in the kth-
term truncated series on the order of 9%, which is called the Gibbs phenomenon.
As k increases, the oscillations do not die out but move closer to the dis-
continuity. The uniform convergence guaranteed by Dirichlet’s result holds,
of course, but refers to any subinterval which excludes the discontinuity
points, and by taking sufficiently high-order truncations we can move the
oscillations as near to the edge as we please. In designing an electronic
square-pulse generator, for example, which builds this waveform through
Fourier synthesis (i.e., by truncated sums of simple sinusoidal waves), one is
generally interested in reproducing the overall shape of the pulses and having
a more rapid convergence. To achieve this, some kind of smoothing has to be
applied to the function so as to replace it by a similar-looking function with
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Fig. 4.11. The Gibbs phenomenon. This is an amplification of Fig. 4.5 extending from
x = w/4 to =/2 over the upper half of the rectangle height. The vertical arrows
indicate the position of the maxima as they approach the discontinuity edge
and the horizontal ones, their values. The numbers beside the arrows give their
location in units of figure width and discontinuity height.
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no discontinuities and as highly differentiable as possible. We could also
replace the Fourier coefficients f,, by f,s,, where {s,},c is a set of coefficients
which fall off to zero for large n, thereby improving the convergence rate of
the Fourier series. In fact, the two approaches are equivalent, and they bring
in the concept of convolution on which we shall briefly digress.

4.4.8. Product and Convolution

Let {f,}rez and {s,},c# be the Fourier coefficients of two functions f(x)
and s(x) satisfying (for the moment) the Dirichlet conditions. Consider now

&n = snj;w ne 3’, (457)

to be the Fourier coefficients of a new function g(x). The kth truncated sum
of this function will be (Section 4.2)

gx) = @m)~12 > s,f, exp(inx)

In|<k

= (2m) %2 f_ﬂ dzs(z2) Jj dyf(y) lz explin(x — y — z)]

n|<k
=en [ ds@ [ a0 -y - 2, .59)

where we have introduced the Dirichlet kernel (4.19). As we let k — oo, the
integral in y becomes f(x — z) by Dirichlet’s result, and hence

g(x) = (2m)- 112 f " dzs(@)f(x — z) = (2m)- 12 f_ &l —2)iz)
e 2m) (s % F)0). (4.59)

This defines the convolution of the functions s(x) and f(x) on the interval
(—m, m]. Its structure is analogous to the finite convolution of Section 3.1.
We have also shown by (4.57)-(4.59) that if s(x) and f(x) satisfy the Dirichlet
conditions, so does (s * f)(x).

Exercise 4.22. Assume f(x) and g(x) are two functions satisfying the
Dirichlet conditions. Show that their product

h(x) = f(x)g(x) (4.60)
will also satisfy them. Show that the Fourier coefficients of A(x) are
hy, = (277)_”2 z So&n-m = (277)_1/2 z So-nn (461)
meZ meZ

This is the discrete convolution between the two sets of Fourier coefficients. These
relations have been collected in Table 4.3.
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4.4.9. Function Smoothing by the Lanczos o-Factors

The graphical meaning of the convolution between two functions (4.59)
can be brought out and applied to the problem of eliminating the Gibbs
phenomenon by a particular example. Let s(x) be a rectangle function (4.24)
of area (2m)%/2, so that n = (2m)'/?/e. The convolution of this with an arbitrary

J(x) is
FR(x) = 2m)~V2(f % R&™(x)) = (2m) =12 Jj df(x — y)REM(p)

&/2
g f df(x — y), (4.62)
—-&/2

a function which represents at each point x the integrated mean of f(x) in an
interval of width e. If f(x) is a rectangle function, say, f%(x) will be a trapezium:
the discontinuities of the original function have been smoothed over an
interval e. In terms of the Fourier coefficients, using the rectangle function
coefficients (4.25), we obtain

Jof = foRE™ = £, sin(ne/2)(ne2) = fron. (4.63)

The coefficients o, in (4.63) have thus the same effect on the Fourier coeffi-
cients as the integrated mean on the functions. They are called the Lanczos
o-factors (Fig. 4.5). Their effect on the improvement of convergence for the
function in Fig. 4.11 is given in Fig. 4.12. The sequence of truncated sums
is seen to converge to a trapezoidal shape.

Fig. 4.12. Convergence improvement through the Lanczos o-factors. Convoluting the
function of Figure 4.11 with a rectangle function of width e = «/6 [Eq. (4.63)],
the truncated sums approach the trapezium limit with decreasing overshoot.
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4.4.10. The 6-Function Smoothing

Another particularly useful function for the process of smoothing
discontinuous functions by convolution is one which we can define through
its Fourier series as

0(x, 7) = 2m)~? Z exp(—n3r + inx)

ney
= (271)‘1[1 +2 i exp(—n?) cos nx]
= (27)"195(x/2, e77), >0, (4.64)

where &3 is one of the Jacobi theta functions [see Whittaker and Watson
(1903, Chapter XXI) and the mathematical function tables of Abramowitz
and Stegun (1964, Eq. 16.273)].

The theta function, as defined above, will be seen in Section 5.1 to be a
solution to the problem of heat diffusion in a ring. It has been plotted in
Fig. 4.13(a). It resembles a Gaussian bell function [exp(—x2/7), x € R]
exhibiting a peak at x = 0 and falling off sharply for small values of . The
Fourier coefficients of (4.64),

0,.(r) = 2m)~ 12 exp(—n?7), (4.65)
®
- 71256 " m
L J' J' (< -) A’
T T -8 18
2
/\ 64 ? b‘
= + . s >
#%9
/\ 16 s 9
: J. J. o0 "
o9
%
04 2 LS
L 1 1 oo ebo.\. e
— T 1 el

Fig. 4.13. The Jacobi theta function in Eq. (4.64) for (left) various values of the width
parameter = and (right) their Fourier coefficients.
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32

'
1

Fig. 4.14. Convergence improvement by the 6-factors of Eq. (4.65) for a value of
T = 0.005.

for growing n, decrease faster than any negative power of |n|; indeed, they are
discrete points on a Gaussian bell. See Fig. 4.13. It follows that 6(x, 7) is
infinitely differentiable in x. If (4.64) is placed in convolution with an arbitrary
function f(x) which we assume (here) to satisfy the Dirichlet conditions,

SoOx) = Qm) 72+ 0, DIx) = @m)712 f:z dyf(»)(x — y, 7), (4.66)

the f(x) is smoothed into an f%®(x) which is infinitely differentiable in x. The
Fourier coefficients of (4.66) are then

Ji® = foexp(—n*7), (4.67)

which indeed decrease faster than any negative power of |n|. In Fig. 4.14
we have plotted the convergence of the truncated sums of a function with a
discontinuity (the same as Figs. 4.11 and 4.12) with 6-smoothing. Further
characteristics of the Gibbs phenomenon can be found in the books by
Carslaw (1930, Chapter 9) and Dym and McKean (1972, Section 1.6).

Exercise 4.23. Prove that the #-function (4.64) tends toward infinity at x = 0
as 7 — 07", Nevertheless, it encloses the unit area

n
f dx0(x, ) = 1 (4.68)
-
independently of the value of 7. In this respect it has two properties in common

with the Dirichlet kernel: Eq. (4.20). Particularly, Eq. (4.68) will lead to the
total conservation of heat in a ring (Section 5.1). Compare with Eq. (1.73).
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Exercise 4.24. Compare Figs. 4.12 and 4.14. Note that for = small, a narrow
peak for (x, 7) corresponds to a broad Gaussian bell for 8,, while for large 7,
the situation is reversed. This suggests a complementarity between the ““width”’
of function and that of its Fourier coefficients. A rough measure of the former is
the equivalent width

W= [ asfeorro) (4.69)

which gives the width of a rectangle function with the same area as f(x) and of
height f(0). This has been contrived mainly for *“peak-like’” functions and can be
meaningless for others. Correspondingly, we can define the equivalent width for
a set of discrete points as

W= 3 filfo (4.69b)

neZ
with a similar interpretation and purpose. Prove the equality
W:W; = 2 (4.69¢)

which accounts for the complementarity of widths in Fig. 4.13. Note that this is
akin—but not identical—to the mathematical statement of Heisenberg’s uncer-
tainty relation in Section 7.6.

Exercise 4.25. Using the Schwartz inequality, show that
F* )X < [f] lel,  [f+gl < @mv2|f] |gl, (4.70)
i.e., the analogue of Eq. (3.10). The result in Exercise 4.26 may be handy.
Exercise 4.26. Show that the convolution (f* g)(x) can be written as an

inner product between f*—the function f*(x)—and a translated, inverted
(o Txg)(x), ie.,

(f*g)x) = (%, 1oT.g) = (T-.0f*, g). 4.71)

Exercise 4.27. In this section we have differentiated functions and found
their Fourier coefficients. Now consider applying the second-difference operator
of Part I to the Fourier coefficients, i.e., let g = Af, defined as

&n = fo+1 — 2fo + fo-1, neZ (4.72a)
Show by (4.40) that this corresponds to
g(x) = —4 sin*(x/2)f(x). (4.72b)

4.4.11. Sum Truncation and Best Approximation

In the preceding part of this section we have been concerned with the
smoothing of discontinuous functions f(x) to a /5(x) [S = R in (4.62) and
S = 0(7) in (4.66)] in order to improve the convergence rate of the succession
of truncated sums f,5(x). The smoothed function is not the original function,
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however. This obvious remark is made in order to emphasize that when the
criterion of ““best approximation” of £.5(x) to f(x) is that the norm of the
residue vector r(x) = f(x) — f.5(x) be minimal, the best approximation is
obtained when only truncation is applied. To prove this, we generalize slightly
the concept of truncated approximations, letting 7" be the set of partial waves
unaffected by truncation, i.e., f,5 = 0 for n ¢ #. We now calculate straight-
forwardly the norm of the residue vector:

o< [r|2=(( - £S5 f— 15
=@ ) — D £S5 — D S5+ D AP

ney” nex” nesy”
=@ED + > 1A — A2 D A (4.73)
nex” nexy”

The last equality can be verified by expanding the last two summands. Now,
the f,’s are fixed and so is 2#. The minimum value of the norm of the residue
vector |r| is thus achieved when in (4.73) we set f,5 = f, for all ne A. We
thus conclude that in any truncation set & the best approximation to f(x)
in the norm is provided by f,(x) constructed with the original Fourier coeffi-
cients. We also conclude from (4.73) that

€0 > 2 |2 (4.74)
nex”
This is called Bessel’s inequality. When the truncation set # becomes the
whole of Z, (4.74) becomes Parseval’s identity. Otherwise, it provides an
upper bound to the norms of the truncated sums.

Table 4.3 Various Operations and Properties Connected with Differentiation and
Convolution of Functions and Their Fourier Coefficients

Operation Function f(x) Fourier coefficients f,
Differentiation de e
order p dx? 1) n)fn
Integration J dyf(y) @(n)~fu,n#0
(fo=0) ¢ f§~9, arbitrary
Second —4 sin? xf(x) Fovr— 2 + fi-a
difference 2
$.4
Convolution )0 = [ df g =) @) frgn
Product f@ex) @a) 2 3 ifalin
meZ

Convergence If®| < oo |fal < c|n]-?
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Table 4.4 A Short List of Functions and Their Fourier Coefficients

Function f(x) Fourier coefficients f;,

Single partial wave @,,(x) [Eq. (4.9)] g
Dirichlet kernel Dy(x) [Eq. (4.19), Q2m)~12, |n| < k
Fig. 4.3] 0, otherwise

Rectangle function R®™(x) of width (2m) ~Y2en (nef2) =1 sin(ne/2)
e and height 1 [Eq. (4.24), Fig. 4.4]

Triangle function 7"(x) of height 4 (2m)Y24h|mn?, nodd
[Eq. (4.28), Fig. 4.6] (2m)~127h, n=20
0, otherwise
Square wave S@”(x) of P pulses of Q7)~Y24iPy/n, n= 2k + V)P, ke Z
height 5 [Eq. (4.39a), Fig. 4.8] 0, otherwise
N
Polygonal function P(x) passing —(Q2n)~Y2p-2 Z (M +1 — my) exp(—inxg+1),
through (x, P(x)), k = 1,..., N, o ek n#0
with slopes m; and &, = Xg41 — X 3Qm)"Y2 > g[P(xk+1) + P(x)], n =0
[Eq. (4.88), Fig. 4.15(a)] k=l
Theta function 8 (x, 7) [Eq. (4.64), (2m)~ 12 exp(—n?1)
Fig. 4.13] -

4.5. The Dirac 6 and Divergent Series

Among the functions we have come across, three of them, the Dirichlet
kernel, the rectangle function, and the Jacobi theta function [Egs. (4.19),
(4.24), and (4.64)], will now be used to introduce the subject of generalized
functions such as the Dirac &, its derivatives, and the divergent Fourier
series which they represent. We shall also provide some concepts from
functional analysis so as to outline the proper framework for these objects.

4.5.1. Three Functions and a Limit
We shall be interested in the behavior of the Dirichlet kernel D,(x) as
k — oo, of the rectangle function of unit area R®1/®(x) as the width ¢ — 0,
and of the theta function 0(x, 7) as 7 tends toward zero from positive values.
To focus on their common properties we shall denote them by
8(x) = Di(x),  RY*P(x),  0(x, 1/k), (4.75)

respectively, noting that they are all real and even and enclose unit area.
Their Fourier coefficients are, correspondingly (Table 4.4),

A L {(2#)_1/2, In| <k
n - 0,

in| > k}’ (27)~Y22kn~1 sin(n/2k), (2m)~ 12 exp(—n?/k).

(4.76)
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Now, if f(x) is a function satisfying the Dirichlet conditions with Fourier
coefficients f;, then

JF=QnyRfsr,  ned, @.77)
will be the Fourier coefficients of the convolution (Section 4.4) of f(x) with
8%(x):

FH() = @m=2 3 Fexpiny) = (£ * 85)()

negy
- f " a8y — %) = f " iy — 2

= (8%, T f) = (T_,8% 1), (4.78)
where we have also written the expression as an inner product [see Eq. (4.71)].
As k — o0, D,(x) behaves peculiarly: it converges nowhere, oscillating faster
as k increases. The rectangle and f-function become high and narrow, and
all grow without bound at x = 0. Yet (4.77) and (4.78) have a well-defined
limit: since 8,* — (27) 12 for k — o0, f,* — f, and f*(y) = f(»).

4.5.2. The Dirac 6 Symbol
We can write symbolically
lim 8%(x) = 8(x) 4.79)
k— o

and will call this the Dirac 8. It has the property

(8, T.f) = f_” dxf(x + y)8(x) = f dxf(x)3(y — x) = f(y)- (4.80)

This is to be interpreted as the limit of (4.78) as k — oo, the symbol & being
replaced by the limit of the integral of any of the sequences of functions
(4.75). The Dirac 6 assigns to every continuous ‘“test’ function f(x) the num-
ber f(0) [6: f+ (8, f) = f(0) € ¥]. It is thus a mapping from the space of
continuous functions onto the complex field. Such generalized mappings are
called distributions. Following the mathematical physics usage, we shall speak
of them as generalized functions since, as we shall see, the Dirac 8(y — x) and
other objects of that kind can be handled as if they were ordinary functions
in almost every case.

4.5.3. Divergent Series Representation

The & Fourier coefficients can be found by their usual definition and
(4.80) as

8, = (s, 5) = (2m)~13 f dx8(x) exp(—inx) = (2m)~12 = lim ,*.
-1 Kk—
4.81)
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The Fourier series representing the Dirac 6 is thus

8(x) = 2m)~* D exp(inx). (4.82)

negy

Although the actual sum of (4.82) is meaningless since the series diverges, the
equation is consistent with the symbolic notation (4.79) and should be
interpreted as the equality of the Fourier series for 6(x) in (4.75) and (4.76)—
or any other such sequence we may produce—when k — co. The divergent
series representation can be handled consistently by exchanging sums and
integrals while leaving the limit £ — oo out of sight. One verifies in this way
that

103 = [ afpr -0 = [ ayo{ent 3 exslinty — 21}

ney

= (Q2m)! Z exp(iny)[f; dxf(x) exp(inx)]

neyx

= (2m)~12 3 f, exp(iny). (4.83)

neyx

4.5.4. Derivative of a Function at a Point of Discontinuity

We can gain confidence in the use of this convenient shorthand by
applying it to the relation between the Fourier coefficients of the triangle
function and its first two derivatives [Eqgs. (4.54)—(4.56)]. In Section 4.4 we
stopped short of analyzing the sequence of truncated sums [Fig. 4.10(c) and
Eq. (4.56)] which gave rise to a divergent series. We can now tackle this
question. The Fourier coefficients of the derivative of the one-pulse square
wave of height D/2 := hjm are

SAhiny — {_2D(27T)_1/2, n odd

0, Y even} = D[—6, + exp(—inm)s,]. (4.84)

The corresponding series should then represent the derivative of the one-pulse
function with discontinuity D as

% S@P2(x) = D[—8(x) + 8(x — m)], (4.85)

where we have translated the argument of the second & [see Eq. (4.36)].
A glance at Fig. 4.10b, c tells us that as the sequence of truncated sums
approaches a function with a discontinuity at some point x, the derivatives
of these constitute a sequence of functions which grow at x = x;. At the
limit, intuitively, the derivative of a step function with discontinuity D at x, is
D3(x — xy).

We verify the validity of (4.85) by introducing both members of the
equality into an inner product with a continuous test function g(x), element
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of ¥"P, with Fourier coefficients g,. One can proceed in two ways, either by
using (4.84),

(9]

|

> Si¥*g.=D > [—8, + exp(—inm)3,lg,
ney negx

—DQ2m)"Y2 3 g, + D2m)*2 3 g, exp(—inm)
ney ney

—Dg(0) + Dg(—m), (4.862)

or alternatively by integration by parts and recalling the periodicity of all

functions involved,

S, g = f

dx [d% S(x)] * 2(x)

I

SEIEWI, — [ xS 15 8

I

0-— (D/Z)[ f_ On . fo ] di delod]dx

= —(D/2)[g(0) — g(—m) — g(=) + g(0)] = — Dg(0) + Dg(m).
(4.86b)
We thus find

(SWP27 gy = (D(—S + T_.9), 8) 4.87)

for arbitrary continuous g € ¥"°. We can thus state that the equality (4.85)
between generalized functions represented by divergent series holds in the
sense (4.87).

4.5.5. The Polygonal Function

We shall use the relation between derivatives of discontinuous functions
and Dirac 8’s in order to find the Fourier coefficients of a polygonal function
[Fig. 4.15(a)] whose graph joins the ordered set of points {x;, P(xy)}, kK =
1,2,..., N, with straight lines. This function can be described in terms
of the rectangle function (4.24) as

N
P@)= D, (mx + BIROD(x — X1, (4.882)
k=1
where
& = Xgv1 — X Xe+1/2 = (e + Xi41)/2, (4.88b)
my = [P(x+1) — P(xp)]/ex, (4.88¢)

b, = P(x;) — myXy, k=1,2,...,N, (4.88d)
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(B (x))
.- (XTP(Xz)) //
a 7T v 7T
b —— —
) Fig. 4.15. (a) The polygonal function
(m’_m‘)fs (x-x,) S joining the points [xi, P(x)],
c 2 k=1,2,...,N, by straight
T l g lines; (b) and (c) are its first
) . N
O and second derivatives.
and we identify
xo = xN e 27T, xN+1 = xl + 27T. (4.886)

To find the Fourier series, we differentiate (4.88) repeatedly [Figs. 4.15(b)
and (c)]:

Pi(x) = ﬁ: MR D(X — X 41/2)s (4.89)
PO =S (s = mdB0e — Tens). (450)

The Fourier coefficients of (4.90) can now be computed easily using the
translation relation (4.36). We find

N
P = ()14 Z (Mg 11 — my) exp(—inx ). (4.91)
k=1

The Fourier coefficients of the original function (4.88) are thus (4.91) multi-
plied by (in)=%, n # 0, i.e.,
N
Po=—Qm 2 3 (myss — m exp(—inxe,1),  (4.92a)

k=1

while by direct integration of (4.84) we supply the coefficient

Po= @m) 123 S e[P(rss) + P(x)l (4.92b)
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Exercise 4.28. Prove by direct calculation that (4.92) are indeed the Fourier
coefficients of the polygonal function (4.88).

Exercise 4.29. Examining the limits of (4.75), show that the Dirac 8 is not an
element of L2(—m, 7).

Exercise 4.30. Show that the convolution of two Dirac &’s is a Dirac 9, i.e.,
(T_,8, T_.8) = f dxd(x — y)o(x — z) = 8(y — 2). (4.93)

This can be done either rigorously from (4.75), directly from (4.93) and exchange
of integrals, or by the Fourier coefficients.

Exercise 4.31. Assume you have a function f(x) whose Fourier coefficients
repeat themselves modulo N, i.e., f, = f,+~. Show that f(x) will be a sum of N
Dirac 8’s ‘‘sitting’’> on equidistant points in (—, 7]. This is called a *picket-
fence’’ or ““Dirac comb’’ generalized function. In fact, finite-dimensional Fourier
transforms can be obtained in this way from Fourier series.

4.5.6. The Derivatives of the Dirac &

Once we have lost qualms in handling the divergent series representing
the Dirac 8, we can proceed with other such generalized functions. Recalling
that differentiation of a function f(x) multiplies its Fourier coefficients £, by
in, we can formally differentiate Eq. (4.82) p times and define the pth derivative
of the Dirac § as represented by

3PX(x) = dP8(x)/dx? = (2m)~? Z (in)? exp(inx), (4.94a)

ney

with Fourier coefficients
8P = (2m)~M2(in)". (4.94b)

The validity and use of (4.94) are essentially the same as for the Dirac §
except that we must now restrict the space of test functions to €®: p-times
differentiable functions whose pth derivative is continuous. If g(x) is a
%®-function with Fourier coefficients g,,

(6, T,g) = > 8P* g, exp(iny)
ney

(—=1)P@2m) =42 > (in)°g, exp(iny)

ney

= -1y [(277)-1/2 S & exp(iny)] — (~1)g®(y), (4.95)
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i.e., the pth derivative of g(x) at y. This can be verified formally using integra-
tion by parts in the inner product

~

62, T0) = | dxld3/axlg(x + )

-n

= (17 [ awarglr + )]

ar [ "
— (-1 U_nde(x)g(x + y)], (4.95b)
which reproduces the result in (4.952).

Exercise 4.32. The steps taken in Egs. (4.95) involve reckless exchange of
infinite series, integrals, and derivatives. The proper way to justify them is to
define a sequence of functions d?8%(x)/dxP with the property that

tim [ astars ol + ) = (<Iyala. @99

The pth derivative of the Dirichlet kernel and of the theta-function provide such
sequences. The symbol 6®(x) follows the convention (4.79) on limits and integral.
Again, 8® can be seen as a mapping of f on (— 1)?/®(0) € %.

Exercise 4.33. Show that
dP(—x) = (—1)P8P(x) 4.97)

by means of its integral properties and its Fourier coefficients.
Exercise 4.34. Prove that

(T_y8, T_,8®) = f_ﬂ dxd(x — y)dP(x — z) = 8P (y — 2). (4.98)

Exercise 4.35. Prove that a “Taylor expansion” of the Dirac &

2 p
8 + ¥) = T,800) = exp( ¥ i)a(x) = 3 L sox) (4.99)

dx »=o P!
is meaningful. Place the extreme members of (4.99) into an inner product with an
appropriate arbitrary test function. The appropriate test-function space will here
be the ¥~-functions which have convergent Taylor expansion, i.e., the space of
analytic functions on (—, 7]. Note that the Fourier coefficients of (4.99) are

(2m) 12 exp(iny).

Exercise 4.36. Prove in the same sense that the theta function (4.64)—(4.65)
admits the formal representation
0(x, ) = exp(rd?/dx?)3(x), (4.100)

showing that the Fourier coefficients of both sides are equal. In Section 5.1 this
will be seen to correspond to the time evolution of a localized infinitely hot spot
in a conducting ring. Note the analogy with Exercise 1.27.
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4.5.7. On Convergence of Function Sequences

The reader who has felt uncomfortable differentiating discontinuous
functions in Eq. (4.85) may well ask, on seeing Eqgs. (4.99) and (4.100),
whether infinite-order differential operators can ever be applied with any
rigor to such beings as the Dirac 8. The framework for these developments
constitutes the body of functional analysis. We shall draw here only a rough
map of this territory, using as reference points the concepts and examples
which have appeared thus far. First, we must remark that we have used three
kinds of convergence of sequences of functions {f.}-; to their limits f:

(a) Uniform pointwise convergence if lim,_ .[fi.(x) — f(x)] = 0 uni-
formly for all x in the domain of the f;, and f. This was the kind of
convergence assured by the Dirichlet theorem.

(b) Convergence in the norm (or strong convergence) if lim,,_, . |f, — f|| =
0. This is a less stringent condition and requires only that the
function within the norm bars be square-integrable (in the sense of
Lebesgue). We have anticipated in Section 4.1 that this space,
F?(—m, m), is particularly important in much of mathematical
physics, and we shall have more to say about it below.

(c) Componentwise convergence (or weak convergence) if

lim (g, f, — ) =0
k=

for all fest functions g in some suitable space of functions &
“Suitable” spaces have been €©, €@, €, or the space of
analytic functions. This is a still less stringent requirement than
convergence in the norm, and it is in this sense that sequences of
functions converge to the Dirac & or its pth derivatives. Equality
(or equivalence) of functions—ordinary or generalized—can be
similarly conditioned. When we showed that the Fourier com-
ponents of two expressions such as the divergent series for §®(x)
in (4.94) or Egs. (4.99) or (4.100) were equal, we were only proving
weak equality in the sense (c).

So that the inner product (g, f) will be finite when f is a generalized function
in a class &’ with Fourier coefficients f, which increase with |n|, the class of
test functions .%’ to which g may belong must be such that its g, decrease even
faster so that >, gXf, < co. The “larger” %’ is, the “smaller” % must be.
The former is the #2-dual space of the latter. This is illustrated with the
successive derivatives of the 8 and the nested €®-spaces. The space of func-
tions which is self-dual in this sense is precisely that of square-integrable
functions #?(—m, ), since there |f|| = (f, f)*/2 < oo. It can be shown that,
infact, & = L*—m,7) < &, the relevant convergence being (b) and (c),
respectively, for the elements in the last two spaces.
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4.5.8. On Cauchy Sequences and Complete Function Spaces

Since sequences of functions in #?(—m, 7) may converge (in the appro-
priate sense) to objects outside this space, as in the case of the Dirichlet,
rectangle, and theta functions “converging” to the Dirac 8§, it is useful to
introduce a convergence criterion in order to characterize spaces which are
complete, i.e., where the limits of sequences belong to the same space. We
thus define a sequence of functions {f;}°-; to be a Cauchy sequence if for
every given ¢ > 0 one can find an N such that for n,m > N, |f, — f,] < e
Now, a vector space endowed with a positive inner product where every such
Cauchy sequence converges to a function within the space is said to be a
Hilbert space. All finite-dimensional spaces are Hilbert spaces. A fundamental
theorem by Riesz and Fischer states that #?(#) is a Hilbert space. Another
Hilbert space one can construct is /2, the space of all infinite-dimensional
vectors f:={f,},cer with inner product (f, §)z2 = S.co fi¥g.. As Fourier
analysis and synthesis suggest, there is a mapping between elements in
L2(—m, ), f, g, etc., and elements in /2, f, §, etc., which preserves the angles
between any pair of vectors, as (f, g) g2 = (f, §);2. Such a mapping is said to
be isometric. Moreover, this mapping is one-to-one and can be shown to
transform the whole of £?(#) onto I? and conversely. Such an isometric
mapping is said to be unitary. The difference between isometric and unitary
mappings appears only in infinite-dimensional spaces. The result for the
mapping between #?(—, 7) and /? actually generalizes to another important
theorem which states that any two (infinite-dimensional separable) Hilbert
spaces can be mapped onto each other through a unitary transformation.
Other Hilbert spaces besides #?(—, 7) and /2 will be discussed in Part IV.

4.5.9. Complete Bases for a Function Space

The last subject to be outlined is the question of what constitutes a basis
for #*(—m, m). A denumerable set of nonzero, linearly independent vectors
{@a}nez 1s said to be a complete basis for a Hilbert space if for every one of its
elements f, (f, ¢,) = 0, n € Z, implies f = 0. One can then find coefficients f,
such that the sequence

fo= > fupn (4.101)
Inl<k

converges in the norm to f. The set of vectors given by the imaginary exponen-
tial functions (4.9), the Fourier basis for #?(—=, w), is an example. Note that
f(x) need not satisfy the Dirichlet conditions which refer to pointwise con-
vergence but must only be in £?(—a, «). If the basis is orthonormal [i.e., if

(s @n) = 8.m), the coefficients f, are simply (¢, f), and we can write
f= > fion  fo= (o), (4.102)

ney
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valid in the norm. Equation (4.102) is actually valid weakly for f € .#’. The
basis is said to be dense in these spaces.

4.5.10. Dirac’s Generalized Basis

When we deal not only with Hilbert spaces but with triplets ¥ <
LY —m,m) < &', completeness of a basis in the norm appears too stringent.
Edging toward abuse of notation, we can speak of Dirac’s generalized basis
{8,}, 6, = T_,8 € &', where the label y ranges over (—, ]. Such a basisis
to allow for the expansion of any f, weakly, as

= om0 = 6,0, (4.103)

The vectors of this basis are orthonormal in Dirac’s sense:
(6y,8,) =8(y — 2). (4.104)

[See Eq. (4.93).] Exchanging the vector space “integral” (4.103) with ordinary
integration, we can verify, for instance,

D) = (n | a/018,) = [ df0)@nT-9)
- [ )6, T

= (@mi2 f_ﬂ dyf(y) exp(—iny) = fy (4.1052)

or

(85 1) = (s f dyf(y)ﬁy) - j df ()5, 8,)

~ [ arowe - » = 1. (4.105b)
The two bases are related by Egs. (4.102) and (4.103) as

8. = > (Pn 8)Pn = 2m) 12 > exp(—inx)ep,, (4.106a)
ney ney

f de(5,, I8, = @)~ f dx exp(inx)8,.  (4.106b)

Pn

The point of view which emerges from the introduction of the Fourier-¢
and Dirac-8 bases into generalized function spaces is that a vector f can be
represented in the former as an infinite column vector with elements { f,},.o
and in the latter as a column vector of height 27 whose “rows” are labeled
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by a continuous index x € (—m, 7] and whose xth entry is f(x). The trans-
formation from one representation to the other is achieved by

) = Gof) = S G @)@n D), (4.1072)
ney
fo=(@uD = " dx(n, 8,)5. ), .107b)

which are nothing more than the Fourier synthesis and analysis, Egs. (4.32).
In terms of vector components, we can visualize Eqs. (4.107) as the trans-
formation through a “rectangular” matrix @ = |@,(x)| = [(8,, @,)| with
rows labeled by x and columns by n. Fourier synthesis (4.32a) is then the
multiplication of @ and the discrete-row vector (f,), giving the continuous-
row vector [f(x)], while Fourier analysis (4.32b) is the multiplication of the
transposed conjugate ®* and [f(x)], giving back (f;). In the latter case we
integrate rather than sum over the continuous label in the matrix and vector.

Exercise 4.37. Compare the point of view regarding ® as a (passive) trans-
formation between coordinates f(x) and f, with that developed in Section 1.3.
Note that in comparison with Eq. (1.28), the e- and 8-bases play analogous roles,
as do the &- and <-bases.

’

Exercise 4.38. Verify that @, although ‘‘rectangular,”” is a unitary matrix.
Show that ®'® is, because of (4.10), an infinite unit matrix with discrete rows
and columns, while ®®7 is, by virtue of (4.82), a unit matrix with a continuum of
rows and columns and a Dirac 3§ sitting along the diagonal. These are two repre-
sentations of the unit operator in the ¢- and 8-bases, respectively. This will be
elaborated in Section 4.6.

Depending on the reader’s inclination toward pure or applied mathe-
matics, he may want to pursue the subject of generalized functions to their
complete formulation, or he may be content with the physicist’s point of view
of accepting a reasonably working and economical structure and ask for the
applications to justify its use. The work of Gel’fand et al. (1964-1968) (in five
volumes) is a detailed rendering of the theory and fortunately not the acme
of abstraction. Most texts on quantum mechanics or practical communication
theory make extensive use of plane waves, localized states, or unit impulse
functions, so there is little to be added in terms of the usefulness of the con-
cepts and their adaptability to the degree of rigor demanded by the circum-
stances.

4.6. Linear Operators, Infinite Matrices, and Integral Kernels

In Section 4.3 we introduced the translation and inversion operators T,
and [, defined by Eqgs. (4.36) and (4.41) as linear mappings in the space of
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functions ¥ which satisfy the Dirichlet conditions. These can be extended
to generalized functions as they stand. Later, in Section 4.4 we dealt with the
operation of differentiation which is linear but which can map elements of
7P out of this space; in particular, in Section 4.5 we saw that discontinuous
functions were transformed under differentiation into generalized functions
in % represented by divergent Fourier series. Repeated integration, on the
other hand, can bring functions in % back into ¥°. We shall ask our
operators here to be /inear mappings in the space of generalized functions,
but we cannot in general be too precise about their domain and range. In
this section, rigor is explicitly disclaimed. We are presenting here mathematics
as applied in quantum mechanics a la Dirac. It has intuitive appeal and
represents a real economy in notation.

4.6.1. Operators and Their Matrix Representatives

Let A be a linear operator whose action on the vectors of the ortho-
normal ¢-basis is known:

A(Pn = (PnA = Z Amn(Pm9 (41083)
me

where we have used (4.102) for ¢4 so that

Apn = (‘Pm’ (PnA) = (‘Pma A<Pn) (4108b)

Its action on any infinite linear combination f of these is then

Af=A D fion= > fiR@n= > fidw®n

nex ney n,mex

=fl= 5 f 5, (4.109)
megr

Performing the inner product with the vectors of the ¢-basis, or using their
linear independence, we find

ney
The column vector (f;) is seen to transform into (f,,%) by multiplication
by the matrix A = ||4,,|, which represents the operator A in the ¢-basis.
The matrix is infinite, its rows and columns numbered by m, n € Z, but
otherwise our construction proceeds exactly as in Section 1.3. The ortho-
normal basis we shall use in the remainder of this section is the Fourier
-basis.

Exercise 4.39. Find the matrix T, representing the translation operator T,.
This can be done by either calculating (T,)m, by (4.108b) and (4.36a) or, for
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fT = T.f, comparing (4.110) with the result (4.36b). One finds the matrix to be
diagonal:

(To)mn = Omn exp(ina). (4.111)

In particular, for T, = 1, (4.111) is the infinite unit matrix.

Exercise 4.40. Find the matrix I, representing the inversion operator [,.
Again, this can be done by (4.108b) or (4.110) using (4.41). It is an antidiagonal
matrix:

(Io)mn = Sm,-—n = 8m+n,0- (4112)

Exercise 4.41. Verify that the products of translations and inversion matrix
representatives (4.111) and (4.112) follow Egs. (4.42).

Exercise 4.42. Consider the operator of differentiation: f® = V?f. Find the
matrix V representing it, again, either by (4.108b) or by (4.110) and (4.51). One
can show V to be a diagonal matrix whose elements are

Von = Omain. (4.113)
Find its powers as well.

4.6.2. Operators and Integral Kernels

We also have the Dirac generalized basis to describe the function vector
space [Eq. (4.103)]. Correspondingly, operators will have their matrix
representatives in this basis. These ‘“matrices,” however, will have their rows
and columns labeled by continuous indices in the range (—, 7]. We follow
the argument (4.108)-(4.110), assuming now that the action on Dirac’s basis
is known:

AS, = §,4 j A, i, (4.114a)

having used (4.103) on 84, where
A(x,y) = (85, 8,%) = (85, AB)). (4.114b)
As before, we can find the action of A on any f by (4.103) as

at=a [ arme, = [ armas,

— j Y & J_ " BAG, I8, — T4 — f " A5, (4.115)

Performing the inner product with the vectors in the 8-basis and using
(4.104), or by linear independence alone, we find

7409 = [ v 7)) @116
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as the analogue of (4.110) in the Dirac basis. Equation (4.116) shows that the
operator A is represented here by an integral kernel A(x, y) which acts as if
it were a matrix |A4(x, y)| with a continuum of rows and columns acting on
like column vectors, integration replacing sum over the entries.

Exercise 4.43. Show the integral kernel T,(x, y) representing the translation
operation T, to be
To(x,y) = 8(x — y + @) (4.117)

(where a, x, and y are to be considered modulo 27), i.e., an off-diagonal *“ matrix.”
Verify that (4.117) in (4.116) correctly reproduces the translation (4.36a). In
particular, for T, = 1 this defines the unit or reproducing kernel.

Exercise 4.44. Show the integral kernel Iy(x, y) representing inversions [,
to be
Io(x, y) = 8(x + y), (4.118)
i.e., an antidiagonal ‘‘matrix.”

Exercise 4.45. Verify the products (4.42) for the integral kernels (4.117) and
(4.118) representing the operators.

Exercise 4.46. Find the integral kernel V(x, y) representing the operator of
differentiation V. Using (4.98), show that
V(x,y) = 69(x — y). (4.119)

Find also the integral kernel representing V7,

4.6.3. The Link: Fourier Transformation

The matrices representing the operator A in two bases can be related,
as in Section 1.3, by the transformation linking the two bases. Indeed,
between the Fourier and Dirac bases we have

A(x> y) = (Sx’ Asy) = z (sx’ q’m)(q’ma A<Pn)(q:’m sy)
m,nex’
=@m)t D> Appexpli(mx — ny)], (4.120a)

m,ne

A = (o ) = [ dx [ dy(@n 86,0 A8)5,, 0
= (27) ! Jn dx fﬂ dyA(x, y) exp[—i(mx — ny)]. (4.120b)

Exercise 4.47. Verify the relations (4.120) between the matrices and integral
kernels representing the translation, inversion, and differentiation operators
found above.
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Exercise 4.48. Interpret Eqs. (4.120) as the matrix equations
A=BAD!, A=A, &= |G 9, (4.120¢)
where @ is the ‘“‘rectangular’ matrix suggested in the discussion at the end of
Section 4.5.
Exercise 4.49. Prove
TV = VI, (4.121a)
1,V = —Vl, (4.121b)

by their action on an arbitrary function f(x), on its Fourier coefficients, or their
matrix or integral kernel representatives.

4.6.4. Hermitian and Isometric Operators

Proceeding along the lines of Chapter 1, in classifying and studying the
properties of operators, now in function (Hilbert) spaces, we shall define an
operator H to be hermitian if

(Hf, g) = (f, Hg) (4.122a)

for all f and g in the domain of H. It is easy to see that if (4.122a) holds and
the ¢- and 8-basis vectors are in the domain of H, then H is represented by a
hermitian matrix and kernel, i.e., those which are equal to their transposed
conjugates:

e = Hoy (4.122b)
H(x,y) = H(y, x)*. (4.122¢)

In particular, the inversion operator [, and —iV are represented by manifestly
hermitian matrices and kernels [Eqgs. (4.112), (4.113), (4.118), and (4.119)].
An operator U is said to be isometric if

(Uf, Ug) = (1, g) (4.123a)

for all f and g in its domain. Again, for the vectors in the ¢- and §-bases we
can write out the inner product and find the condition on the representatives
to be

> U, =5, (4.123b)
meZ
f Ty, 2 U, 2) = Blx — 2), (4.123¢)

The translation operators T, are represented by such matrices and kernels
[Egs. (4.111) and (4.117)].
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4.6.5. Self-Adjoint and Unitary Operators

Not much has been said here about the domain of the operators, although
this is in fact the key element which allows one to know when the results of
finite-dimensional matrices on complete eigenbases can be translated to the
infinite-dimensional case. For this, let us remark that the adjoint At of an
operator A is defined as that linear mapping which, if it exists, satisfies
(A*f, g) = (f, Ag). A self-adjoint operator is a hermitian operator where the
domain of A and AT are the same. Similarly, a unitary operator is an isometric
one where this happens.

It is for self-adjoint and unitary operators that powerful results on eigen-
bases hold. Fortunately all of the operators which we shall handle and most
of the operators the reader is likely to meet in quantum mechanics are either
self-adjoint or unitary or have extensions which are. However, one does
occasionally stumble upon innocuous-looking operators which under closer
scrutiny turn out to be only hermitian or isometric, but it would not serve
the purpose of this text to insist too much on these.

Exercise 4.50. Show that the translation and differentiation operators are
related by

T, = exp(aV). (4.124)

This is easy to verify for the matrix representatives (4.111) and (4.113) or for the
kernels (4.117) and (4.119) using (4.99). It is true for the operator as well, due to
the fact that —iV has a self-adjoint extension here. From (4.124) it is also clear
that T, commutes with V.

4.6.6. Some Facts Concerning the Spectra and Eigenbases of Self-Adjoint
Operations

When a vector f in the domain of an operator A satisfies
Af = M, A€, (4.125)

it is said to be an eigenvector of A with eigenvalue A. This definition is the
analogue of that given in Section 1.7 for finite-dimensional spaces and has
already appeared in (4.46) in the language of functions. The set of all possible
eigenvalues A in (4.125) constitutes the point spectrum of A. In addition to the
point spectrum (values of A such that A — Af has no inverse), operators may
have a continuous spectrum (values of A for which A — Al is one-to-one but
not onto). This is the main difference from the matrix spectra of Section 1.7,
which are only point spectra. For rigged Hilbert spaces, i.e., triples of spaces
S < L3 f) < & with an inner product, briefly presented in Section 4.5,
one can define generalized eigenvectors f e %" of A by the weaker property
(Atg, ) = Xg, f) for every g e.# The main facts concerning eigenvectors
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and eigenvalues of self-adjoint and unitary operators follow those given in
Section 1.7, namely: (a) The spectra of self-adjoint and unitary operators are
subsets of, respectively, the real line and the unit circle. (b) Eigenvectors
corresponding to different eigenvalues are orthogonal. The proofs follow
(1.106) and (1.112). (c) The set of eigenvectors of a given self-adjoint or
unitary operator constitutes a complete generalized basis for the Hilbert space.
(d) The eigenvalues can be used to label the eigenvectors; if the subspaces
corresponding to a given eigenvalue are of dimension higher than 1, however,
one or more extra operators commuting with A and among themselves have
to be found in order to resolve the labeling degeneracy.

4.6.7. The Fourier and Dirac Bases

Regarding the operators we have been working with, we have already
remarked that the Fourier basis {¢,},.o is the eigenbasis of all T,. In fact,
it is also the eigenbasis of —iV since

—iVe, = ne,, neZ ' (4.126)

This can be ascertained easily from (4.50) or (4.113) and links with the
previous fact by (4.124). The ¢-basis could have been constructed in searching
for the eigenbasis of —iV in the space of periodic functions of period 27. The
spectrum of —iV on this space is the set of integers Z. [If this domain were
not specified, the eigenfunctions would be exp(icx) for ¢ € €. Were we to ask
for the domain to be instead that of functions in [0, o), —iV would not be
self-adjoint.]

Exercise 4.51. Construct the Fourier basis for #?(—m, ) as an eigenbasis
of V2. This leaves ¢, and ¢ _, belonging to the same eigenvalue —n? and hence
not uniquely labeled. As detailed in Section 1.7, one has to search for other oper-
ators to resolve the labeling degeneracy. Try [, which satisfies (4.121b) and show
that it leads to the sine and cosine Fourier series functions 2~/2(¢p,, + ¢ _,).

Turning to the Dirac 8-basis, assume we have an operator K which is
represented by a diagonal kernel K(x, y) = 8(x — y)k(x), where k(x) is some
continuous function of x € (—=, #]. From (4.114) we can then see that the
elements of the 8-basis are eigenvectors of K, as

Ké, = k(»)8,, ye(—m,m, (4.127)

and can thus be used to define Dirac’s basis as an eigenbasis of such operators.

Exercise 4.52. Show that the action of function operators such as (4.127) on
the vectors of function space is

Kf=k@®)f, ie, (Kf)x) = k(x)f(x). (4.128)
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Exercise 4.53. Construct a general operator represented by a diagonal
matrix as Gn, = Om.2,. Show that the action of these convolution operators on a
general vector is

Gf =g(p)f, ie, (Gf)(x) = (g=*f)(x). (4.129)

The concepts outlined in the last two sections will be used in Chapter 5
and in Part III on Fourier integral transforms, where the domain of all
functions will be the full real line. For the reader interested in pursuing the
subject of operator spectral theory, we may suggest one of the volumes by
Gel’'fand et al. (1964, Vol. 4, Chapter 1). The general subject of operators in
Hilbert spaces is a broad subject indeed. Classics in this field are the works of
Dunford and Schwartz (1960), Courant and Hilbert (1962), Yoshida (1965),
and L. Schwartz (1966). The book by Kato (1966) presents results on spectra
and perturbations for finite- as well as infinite-dimensional spaces.

Closer to our approach and in the specific field of Fourier series, the
volume by Whittaker and Watson (1903, Chapter IX) gives a reasonable
survey of the field as it stood at the turn of the century. Selected modern
treatments—in the vein of functional analysis—are those of Lanczos (1966),
Edwards (1967), Dym and McKean (1972), and Oberhettinger (1973). Most
texts on mathematical methods in physics will have at least one chapter
devoted to Fourier series, although those dealing with quantum mechanics
will tend to present the vector space approach of this section. We recall the
books by Messiah (1964) and Fano (1971).

Infinite-order differential operators such as (4.124) and others which
will appear in the following chapters are one of the bases for Lie groups and
algebras [see Miller (1972)]. On hyperdifferential operators of ““higher” types
such as (4.100), i.e., exponentials of second-order differential operators, there
are the mathematical treatments by Tréves (1969), Steinberg and Tréves
(1970), and Miller and Steinberg (1971).

4.7. Fourier Series for Any Period and the Infinite-Period Limit

In this section we shall provide the Fourier series expression for the
expansion of periodic functions of period 2L. This will serve to prepare the
way for describing the vibrating string in Section 5.2 and, in letting L — oo,
finding the Fourier integral transform, which is the subject of Part III.

4.7.1. Fourier Series for Arbitrary Period
Periodic functions of period 27 can be expanded in their Fourier series,

fx) = @m)~12 > f, exp(inx) (4.130a)

ney

£, = (@m)-12 f_ " ) exn—tin, (4.130D)
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and the Parseval identity is

t.g) = f dfye(x) = S fien (4.130¢)

ney
It is often convenient to have explicit formulas giving a similar expansion for
functions of arbitrary period 2L. We thus define the following quantities:

q = xL[w so xe(—m, 7l =>qe(—L,L], (4.131a)
St = Lm) P fHq) = (L]m) 7). (4.131b)

Substituting (4.131) into (4.130) and dropping the L on f*(g), we find the
period 2L Fourier series,

f(g) = @m)~"2(x|L) > f,L exp(ming/L), (4.132a)
ney
fiF = @m f dqf(q) exp(—ming|L), (4.132b)

and the Parseval identity reads

L
Co=| daf@'e@) = @D 3 fires @132
=i ney
For L = = we regain (4.130). Of course, all the results on Fourier series in the
form (4.130) hold for (4.132) with the appropriate changes of scale (4.131).

4.7.2. Odd Functions on (—L, L)

In Section 5.2 we shall be interested in Fourier expansions of functions
which are odd under reflection through the origin. Since f(—¢q) = —f(q)
and f(0) = 0 = f(L), the values in the interval (0, L) are sufficient to deter-
mine the values of the Fourier coefficients (4.132b), which will display the
symmetry of odd functions: fZ, = —f,L (Table 4.2). The most economical
description can thus be seen to be in terms of the Fourier sine series and its
partial-wave coefficients f,£~ = 21/2jf,L. Using the oddness of f(¢) and defin-
ing for convenience

2= @RDYAE- = i(n/L)M2LE, n=1,2,3,..., (4.133)
Eqgs. (4.132) can be written again as
flg) = QIE)*2 z 0 sin(nmq/L), (4.134a)
negxt
12 = (2/L)”2f dqf(q) sin(nmq/L), (4.134b)
(£, g).° = f dgf(q)*g(q) = D, f*g.. (4.134¢c)
0 negx+
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We see thus that a function f(q) € ¥"P for g € (0, L) can be expanded in a
series of sine functions with all the properties of the Fourier series. Outside
this interval, however, f(g) will be odd under inversions and with period 2L.

Exercise 4.54. Consider a rectangle function of width e and height » centered
at g = qo, i.e., R®®™(q — qo). Find its sine Fourier coefficients

(T _gR®™),° = 2(2L)*?q(7n) ~* sin(nme/2L) sin(nmqo/L). (4.135)

In particular, note that the series coefficients imply RE*em(g — L/2) =
RE-&m(g — L/2). How do you interpret this fact in view of the antisymmetry of
the periodic functions under inversion ? Note that the rectangle function in (0, L)
has a corresponding negative ‘‘phantom’’ rectangle in (— L, 0). This will turn out
to be the Green’s function for elastic media with fixed boundaries in Section 5.2.

Exercise 4.55. Under the assumption that f(g) is even under inversion
through the origin, find from (4.132) the analogue of (4.134), expanding f(g) in
cosine functions. This is simply

f(@) = QL)Y > fuf cos(nmx/L), (4.136a)
neo, &+
f.e = (2/L)? f: dqf(q) cos(nmx/L), (4.136b)
E
Cos=[ afa@re@ =3 firee (4.1360)
0] ne0, &+

Note that if f(g) is assumed differentiable, lim,~o,; df(q)/dg = O.

4.7.3. The Limit L — oo and Fourier Integral Transforms

We now turn back to (4.132) and examine what happens when we let
L — oo, It is convenient to introduce the further new variables

p=mn/Le{0, +Ap, +2Ap,...} = nZ/L, Ap = =[L, (4.137a)

(o) =1k = (L[m)"*f,. (4.137b)
Equations (4.132) can then be written in the form
flg) = @m)~12 Z/ Apf(p) exp(ipg), (4.138)
penZ|L
f(p) = @m)~*2  dqf(q) exp(—ipg), (4.138Db)

to.=| difie)*e@) = 2 Apf(p)*&(p). (4.138¢)

=L renZ|L

As in Section 3.4, the limit L — oo is seen to lead to Riemann integration over



194 Part II + Fourier and Bessel Series [Sec. 4.7]

pEZ in (4.138a) and (4.138c) as Ap — 0. Provided the limits exist, we can
write

@

fa) = @) [ dpfp) exolipa), (4.139%)

7@) = @ny= [ dafta) exp(-ipa), (4.139b)

@

to= wws@=| @, (4.139¢)

where f(p) now stands for the function of p € #Z/L extended to the full real
line by a step function which takes the value f(p) for all p in the intervals
centered at the original points. In Section 7.1 we shall prove the Fourier
integral theorem [Eqs. (4.139)] independently and shall comment on its
range of validity. In Section 3.4 and here we have shown that (4.139) arises
formally from Fourier finite transforms and series.
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